Calmness Modulus of Linear Semi-infinite Programs
نویسندگان
چکیده
Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound on the calmness modulus for semi-infinite programs with unique optimal solution which turns out to be the exact modulus when the problem is finitely constrained. The relationship between the calmness of the argmin mapping and the same property for the (sub)level set mapping (with respect to the objective function), for semi-infinite programs and without requiring the uniqueness of the nominal solution, is explored, too, providing an upper bound on the calmness modulus of the argmin mapping. When confined to finitely constrained problems, we also provide a computable upper bound as it only relies on the nominal data and parameters, not involving elements in a neighborhood. Illustrative examples are provided.
منابع مشابه
Outer Limit of Subdifferentials and Calmness Moduli in Linear and Nonlinear Programming
With a common background and motivation, the main contributions of this paper are developed in two different directions. Firstly, we are concerned with functions, which are the maximum of a finite amount of continuously differentiable functions of n real variables, paying special attention to the case of polyhedral functions. For these max-functions, we obtain some results about outer limits of...
متن کاملCalmness modulus of fully perturbed linear programs
This paper provides operative point-based formulas (only involving the nominal data, andnot data in a neighborhood) for computingor estimating the calmness modulus of the optimal set (argmin) mapping in linear optimization under uniqueness of nominal optimal solutions. Our analysis is developed in two different parametric settings. First, in the framework of canonical perturbations (i.e., pertu...
متن کاملMetric regularity of semi-infinite constraint systems
We obtain a formula for the modulus of metric regularity of a mapping defined by a semi-infinite system of equalities and inequalities. Based on this formula, we prove a theorem of Eckart-Young type for such set-valued infinite-dimensional mappings: given a metrically regular mapping F of this kind, the infimum of the norm of a linear function g such that F + g is not metrically regular is equa...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملA New Approach for Approximating Solution of Continuous Semi-Infinite Linear Programming
This paper describes a new optimization method for solving continuous semi-infinite linear problems. With regard to the dual properties, the problem is presented as a measure theoretical optimization problem, in which the existence of the solution is guaranteed. Then, on the basis of the atomic measure properties, a computation method was presented for obtaining the near optimal so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014